十博体育官网,10bet国际官方网站

十博体育官网
学术讲座
  • 天元讲堂(6.7):New bounds for equiangular lines and spherical two-distance sets
  • 浏览量:120 发布人: 十博体育官网:2019-06-05
  • 报告题目New bounds for equiangular lines and spherical two-distance sets

    报告人:俞韋亘Wei-Hsuan Yu, National Central University

    时间201967日(星期五)10:30—11:30

    地点:10bet国际官方网站本部精正楼(数学楼)307

      

    摘要The set of points in a metric space is called an s-distance set if pairwise distances between these points admit only s distinct values. Two-distance spherical sets with the set of scalar products {α, -α}, α  [0,1), are called equiangular. The problem of determining the maximal size of s-distance sets in various spaces has a long history in mathematics. We determine a new method of bounding the size of an s-distance set in two-point homogeneous spaces via zonal spherical functions. This method allows us to prove that the maximum size of a spherical two-distance set in R^n is n(n+1)/2 with possible exceptions for some n=(2k+1)^2?3, kN. We also prove the universal upper bound : 2n/3 a^2 for equiangular sets with α=1/a and, employing this bound, prove a new upper bound on the size of equiangular sets in an arbitrary dimension. Finally, we classify all equiangular sets reaching this new bound.

      

    报个人主页http://w2.math.ncu.edu.tw/member/full/65

      

      

    欢迎参加!

      


Copyright ©版权所有:十博体育官网管理后台
电话:0512-65112637 传真:0512-65112637  E-mail:sxxy@suda.edu.cn  地址:苏州市十梓街1号 邮编:215006 苏ICP备06032411号
XML 地图 | Sitemap 地图